Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2 (2024)

  • Hammer, G. et al. Natural Gas in Ullmann’s Encyclopaedia of Industrial Chemistry (Wiley-VCH, 2012).

    Google Scholar

  • Gesser, H. D., Hunter, N. R. & Prakash, C. B. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85, 235–244 (1985).

    Article CAS Google Scholar

  • Conley, B. L. et al. Design and study of hom*ogenous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Cat. A Chem. 251, 8–23 (2006).

    Article CAS Google Scholar

  • Hargreaves, J. S. J., Hutchings, G. J. & Joyner, R. W. Control of product selectivity in the partial oxidation of methane. Nature 348, 428–429 (1990).

    Article CAS Google Scholar

  • Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article CAS PubMed Google Scholar

  • Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article CAS PubMed Google Scholar

  • Sobolev, V. I., Dubkov, K. A., Panna, O. V. & Panov, G. I. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24, 251–252 (1995).

    Article CAS Google Scholar

  • Starokon, E. V. et al. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 300, 47–54 (2013).

    Article CAS Google Scholar

  • Starokon, E. V., Parfenov, M. V., Pirutko, L. V., Abornev, S. I. & Panov, G. I. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J. Phys. Chem. C 115, 2155–2161 (2011).

    Article CAS Google Scholar

  • Parfenov, M. V., Starokon, E. V., Pirutko, L. V. & Panov, G. I. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 318, 14–21 (2014).

    Article CAS Google Scholar

  • Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    Article CAS Google Scholar

  • Yu, T. et al. Highly selective oxidation of methane into methanol over Cu-promoted monomeric Fe/ZSM-5. ACS Catal. 11, 6684–6691 (2021).

    Article CAS Google Scholar

  • Narsimhan, K. et al. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction. J. Am. Chem. Soc. 137, 1825–1832 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  • Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article CAS PubMed Google Scholar

  • Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

    Article PubMed PubMed Central Google Scholar

  • Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    Article CAS PubMed Google Scholar

  • Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–226 (2017).

    Article CAS PubMed Google Scholar

  • Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    Article CAS PubMed Google Scholar

  • Patrick, T. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    Article Google Scholar

  • Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article PubMed Google Scholar

  • Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article CAS PubMed Google Scholar

  • Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    Article CAS PubMed Google Scholar

  • Koishybay, A. & Shantz, D. F. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13. J. Am. Chem. Soc. 142, 11962–11966 (2020).

    Article CAS PubMed Google Scholar

  • Sarv, P. et al. Mobility of the acidic proton in Brønsted sites of H-Y, H-mordenite, and H-ZSM-5 zeolites, studied by high-temperature 1H MAS NMR. J. Phys. Chem. 99, 13763–13768 (1995).

    Article CAS Google Scholar

  • Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article CAS PubMed Google Scholar

  • He, Q. et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nat. Commun. 7, 12905 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Jin, R. et al. Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts. J. Am. Chem. Soc. 141, 18921–18925 (2019).

    Article CAS PubMed Google Scholar

  • Gouget, A. et al. Increased dispersion of supported gold during methanol carbonylation. J. Am. Chem. Soc. 131, 6973–6975 (2009).

    Article Google Scholar

  • Denisov, E. T. & Shestakov, A. F. Reactions of alkoxy and peroxy radicals with carbon monoxide. Kinet. Catal. 49, 1–10 (2008).

    Article CAS Google Scholar

  • Boronat, M., Concepción, P. & Corma, A. Unravelling the nature of gold surface sites by combining IR spectroscopy and DFT calculations. Implications in catalysis. J. Phys. Chem. C 113, 16772–16784 (2009).

    Article CAS Google Scholar

  • Liu, Z.-P., Hu, P. & Alavi, A. Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 124, 14770–14779 (2002).

    Article CAS PubMed Google Scholar

  • Cooper, C. M. & Wiezevich, P. J. Effects of temperature and pressure on the upper explosive limit of methane-oxygen mixtures. Ind. Eng. Chem. 21, 1210–1214 (1929).

    Article CAS Google Scholar

  • Liu, M. et al. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J. Magn. Reson. 132, 125–129 (1998).

    Article CAS Google Scholar

  • Sarradin, P.-M. & Caprais, J.-C. Analysis of dissolved gases by headspace sampling gas chromatography with column and detector switching. Preliminary results. Anal. Commun. 33, 371–373 (1996).

    Article CAS Google Scholar

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article CAS Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article CAS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article CAS Google Scholar

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article PubMed Google Scholar

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article CAS Google Scholar

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article Google Scholar

  • Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article CAS Google Scholar

  • Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article PubMed Google Scholar

  • Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article CAS Google Scholar

  • Kästner, J. & Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106 (2008).

    Article PubMed Google Scholar

  • Thetford, A., Hutchings, G. J., Taylor, S. H. & Willock, D. J. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proc. R. Soc. Math. Phys. Eng. Sci. 467, 1885–1899 (2011).

    CAS Google Scholar

  • Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2 (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Kareem Mueller DO

    Last Updated:

    Views: 5899

    Rating: 4.6 / 5 (66 voted)

    Reviews: 81% of readers found this page helpful

    Author information

    Name: Kareem Mueller DO

    Birthday: 1997-01-04

    Address: Apt. 156 12935 Runolfsdottir Mission, Greenfort, MN 74384-6749

    Phone: +16704982844747

    Job: Corporate Administration Planner

    Hobby: Mountain biking, Jewelry making, Stone skipping, Lacemaking, Knife making, Scrapbooking, Letterboxing

    Introduction: My name is Kareem Mueller DO, I am a vivacious, super, thoughtful, excited, handsome, beautiful, combative person who loves writing and wants to share my knowledge and understanding with you.